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ABSTRACT

The suppression of synchrotron emission at low frequencies
due to the jinfluence of the ionized medium is investigated.
Explicit expressions and detailed numerical values of the
emission spectra are presented for various electron energies
and plasma and cyclotron frequencies. Unlike previous studies
of this suppression effect, which were applicable only to
ultrarelativistic electrons, the present treatment is valid
for electrons of arbitrary energies and in particular for
intermediate energy electrons such as those presumably ac-

celerated in solar flares.



INTRODUCT ION

The suppression of the low frequencies of synchrotron
emission due to the influence of the ambient ionized medium
was investigated by Tsytovich (1951), Ginzburg (1953) and Razin
(1957, 1960). This suppression effect is essentially the result
of the phase velocity of light becoming greater than c¢ at frequencies
above the plasma frequency but sufficiently near to it, where the
index of refraction of the ambient medium is less than unity. Ad-
ditional studies of this effect and its application to cosmic

radio emission were given by Ginzburg and Syrovatskii (1964, 1965),

Scheuer (1965) and McCray (1966, 1967).

The influence of the ambient coronal plasma on the spectra
of solar Type IV radio bursts, which are generally believed to
be synchrotron emission of energetic electrons accelerated in

solar flares, was investigated by Ramaty and Lingenfelter (1967).

They showed that the low frequency cutoffs observed for these

bursts (Takakura and Kai, 1961) could result from the suppression

of the synchrotron emissivity at low frequencies rather than from
absorption during propagation through the solar corona, and that

from the study of the observed cutoff it is possible to deduce

the magnetic field or the ambient density of the emitting region.
This possibility was recently substantiated by Boischot and Clavelier
(1967) who pointed out that the very sharp low frequency cutoff .

of a Type IV solar burst, which they observed to originate at a
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large distance from the solar surface, could indeed be a sup-
pression effect rather than absorption, since at the frequency
of the observed cutoff, the ambient coronal plasma could hardly
affect the propagation of radio waves. From these considerations,
they then provided an estimate of the coronal magnetic field at
the site of the emission.

The straight-forward application of this suppression effect
to solar radio emission, however, must be treated with some caution
because all the availaple treatments of the influence of the ionized
medium on synchrotron emission are valid only for ultrarelativistic
electrons whereas the bulk of the Type IV bursts could originate
from electrons of only mildly relativistic energies (Takakura, 1960;

Holt and Cline, 1968).

The radiation in vacuum of electrons of arbitrary energies
spiraling about the lines of force of a constant magnetic field
was first derived by Schott (1912) and discussions of his treat-
ment were given by Schwinger (1949) and Landau and Lifshitz (1962).
Takakura (1960) used these results to calculate the synchrotron
emission from intermediate energy solar electrons. His formalism
was applied to various Type IV bursts (EEEEEEEE and Kai, 1961;
Takakura, 1967; Holt and Cline, 1968), but, as was pointed out

recently(Takakura, 1967; Holt and Cline, 1968) this formalism

suffers from the neglect of the effects of the ionized medium.
Therefore, in order to improve our understanding of the nature of
these solar bursts it would be of considerable importance to re-

lax the ultrarelativistic approximation used in previous treatments
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and to evaluate synchrotron emission spectra from electrons of
arbitrary energies in the presence of an ionized medium.

The general problem of the radiation from charged particles
moving in a magnetoplasma was treated by Eidman (1958), Liemohn
(1965) and Mansfield (1967). These treatments provide explicit
expressions for the spectral and angular distribution of the
power radiated into both ordinary and extraordinary modes by a
single electron moving in a helical orbit in a cold, collision-
less plasma permeated by a static uniform magnetic field. The
resulting spectra were numerically analyzed by Liemohn (1965) at
frequencies in the vicinity of the plasma and gyro-frequencies of
the ambient electrons for which the indices of refraction of either
the ordinary or extraordinary modes are real and greater than unity.
Although part of the solar radio emission, especially in the micro-
wave band, may be produced at these frequencies, in the present
paper we shall only investigate the radiation at freqﬁencies above
the plasma frequency where the indices of refraction of both
ordinary and extraordinary modes are real and less than unity.

For such frequencies the phase velocity of light is greater than
c, and, as pointed out above, this results in the suppression of
the low frequencies of synchrotron emission. In order to assess
the importance of this effect for intermediate energy electromns,
an expression is derived for the frequency spectrum, integrated
over all angles,of the emission from an electron of arbitrary

energy moving in a circular orbit in a homogeneous and isotropic

electron plasma. This derivation is based on the more general



treatments mentioned above, as well as on an independent de-
rivation appropriate for circular motion and frequencies for
which both indices of refraction are isotropic, real, and less
than unity. The resultant emission spectra are evaluated nu-
merically for various electron energies and plasma parameters

and it is shown that for large plasma frequencies there is a
significant suppression of emission for electrons of all energies.
Finally, by comparing these spectra with those obtained from the
ultrarelativistic approximation mentioned above, the validity of
the high-energy formulas used in the previous treatments of the
effects of the medium is investigated at various electron energies

which could be of importance for solar radio emission.
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Radiation From Arbitrary Energy Electrons

The angular and frequency distribution of the electro-
magnetic emission from an electron moving with an arbitrary

velocity v in a circular orbit in a homogeneous ionized medium
-
permeated by a static uniform magnetic fieldB isgiven by (Liemohn,

1965) :
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The subscripts (+) or (-) indicate emission into the ordinary

or extraordinary modes respectively; g is the ratio of v to c;

Yy is the electron Lorentz factor; 6 is the angle between Eand

the radius vector from the electron's guiding center to the point
of observation; UB is the cyclotron frequency of the ambient elec-
trons;ni(v,e) is the index of refraction of the ionized medium
and is in general frequency dependent and anisotropic with respect
to the direction of the magnetic field; and Jg is a Bessel function
of order s. The polarization coefficients o gg (8)ando(,+ (v9)
(Liemohn, 1965) are defined in terms of the components of the

electric vector of the radiation field

. Ee . Ei
e " F ’ K E,



where E, and Eg are the transverse components of E and Ep is the
component of E along the 9§ direction defined above.

The index of refraction and the polarization coefficients
can be determined from the properties of‘the ambient ionized
medium. For a cold collisionless electron plasma these quantities

are (Ginzburg, 1961; Liemohn, 1965).

nZ =y 2pP*(P*-F?)
- t[ 45t + 4YFA(PLF3rcos*e] 2 -2 FHPEFY) - F2s5in*0
)
o 2F(P*—FZ2)ces® o
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The dimensionless quantities F and P are defined in terms of the

cyclotron and plasma frequencies
F=V/96 ) P-"—‘v/vg

where )YB and Vp are given in terms of the magnetic field B and
the electron density nbby

Vg = //2r eB/mc up=(e/(ﬁ)ﬁ';
The indices of refraction,f+ and 7 -, have several cutoffs @®=o0)
and resonances(n-,q). For F)P,OYV>‘1, , however,M+ is real and

/ [/
less than 1,and for F » (P"-I-‘-,'-) l2 4 14- orv> ('J;H);'/q) N %I:L y .
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is also real and less than 1. Assuming that I)P»UB and limiting
our discussion to frequencies greater than (UP:'*I'V:,‘I 5*4' 7}5/2 ‘-E.'%
we see that for 9?*? both indices of refraction are real and there-
fore the total emission is the sum of the emissions in the ordi-

nary and extraordinary modes given by equation (1). Since ’D>UP>) UB’
we can neglect second order terms in 1/F and 1/P, and therefore

the index of refraction and the polarization coefficients given

by equations (2), (3) and (4) reduce to

n*= 1 - v,,‘/v‘ (5)
0(0!‘. = +/ (6)
(7)

Using equations (5), (6) and (7), the total emission is obtained
by adding the contributions from the two modes in equation (1).
This results in

dI(38) ¢ s> ¢'a” /-p*
J “[2v¥ m3c® T n
s

,2 .
[ ctio T, (spnsin®) tpr L (fpn.ﬂﬂ&?] J(»- 5;"") (8)

In order to substantiate the validity of the limiting process used
to derive equation (8), we provide an independent derivation of
this equation,appropriate for the physical conditions mentioned

above. This is done in Appendix I, where we show that equation
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(8) can indeed be derived directly from Maxwell's equations for
an electron of an arbitrary velocity moving in a circular orbit

in a static uniform magnetic field immersed in an isotropic

electron plasma with index of refraction given by equation (5).
Since the radiation has azimuthal symmetry with respect to
the direction of B, the total radiation, I(¥), integrated over all

angles is given by

T = zrr[ng?g—‘ﬁ) sm& d6 C),

This integral can be evaluated by the same methods as those used
by Schott (1912) for the evaluation of a similar integral for
radiation in vacuum. The presence of the ionized medium, however,
introduces some complications and therefore in Appendix II we pro-
vide an outline of the integration process suitable for the pre-

sent problem. The resulting integrated emission is given by
eva? /- 2, 2 2 T’ -
1=y 255 ;;;[ spn* Lg (2527
2 2 _7 (zsx)Jx S .._-‘;Ya
-5 (-pn ) v S‘eccls

For N=1 equation (10) directly reduces to the emission spectrum

in vacuum given by Schott (1912) and Landau and Lifschitz (1962).

In order to compare equation (10) with previous treatments of the
effects of the medium on synchrotron emission we introduce the
emissivity function, F(¥/¥.), given by

! 2 a_2 B"
Flol)= % ;;:;;[SP’L":JQS (25pr) =S°(1P" );f J,(25%)dx

2
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where
v
2' = 2;§_ ) (12)

% 30, 2)?

in terms of which equation (10) can be written as

a

4
Im -5 5”?3772”53 )I(o-38)

For certain limiting conditions equation (11) can be considerably
simplified by using asymptotic forms of the Bessel functions.

In Appendix III we show that:

a) If S/}"3 » | equation (11) reduces to

s
) f; r} ;T,'/z ::;I, eﬂhj )

b) If §»| and Y, »| (but s/h not necessarily larger

than 1) equation (11) also reduces to

o0
F3)= 5(2) [ ks 5
vy
. ufx\V . 2s 7
where ‘3:, - ;;(‘%) = }‘,‘ (6)
l - _.__3!_._- (17)
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From equation (17) we see that, depending on the value of Or/ﬂh 3
condition (a) can be satisfied for small as well as for large
values of s and Y. For example, for 9,, /175 =6,S/};323 for all
values of s and v of interest. On the other hand, condition (b)
will be satisfied in general only by ultrarelativistic electrons.
Indeed, equation (15) is identical to the emissivity function
used in the previous treatments of the influence of the ionized

medium (Ginzburg and Syrovatskii, 1964, 1965; Ramaty and Lingenfelter,

1967.) The validity of this approximation, however, can be best
assessed by the numerical evaluations which are discussed in the

next section.
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Numerical Results

The emissivity function F(U,\)c) can be evaluated by using
equation (11), or if either conditions (a) or (b) are satisfied,
F( u/vc) can be directly obtained from equations (15) or (16)
respectively. The use of these asymptotic equations is necessary
in certain cases owing to the difficulties involved in the nu-
merical evaluation of Bessel functions of large orders and argu-
ments. By simultaneously evaluating equations (11) and (15) we
find that the values of F (D/l)c) given by these equations do not
differ by more than 20% 1fy3-?23 . Similarly, we also find
that equation (15) is accurate to within 20% if ¥, 22-5- Using
these transitional conditions we have evaluated F(\J/:%) as a
function of V/}Jc for various values of) and \JP/UB

In figure 1 IF(D/IQ) is plotted for VYp=o (emission in vacuum.)
The circles correspond to the first 10 harmonics (s=1,...,10) and
it can be seen that as the electron energy increases the harmonics
cluster together and the emission spectrum can be approximated by
a smooth distribution. It can also be seen that the emissivity at
high frequencies increases with increasing energy and that for
Lorentz factors greater than about 3, F('v/UE) can be well approxi-
mated by the ultrarelativistic spectrum ()~9a0 calculated from
equation (15) with N=1.

In figure (2) F‘(v/ﬂ{) is plotted as a function of V[V, for
vp/ga.; 6 - (The assumption that Vg))Vs made in the derivation
of equation (8) is quite well satisfied in this case.) As in the

previous ultrarelativistic treatments of the effect of the medium
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(e.g., Ramaty and Lingenfelter, 1967, Figure 1), there is a sig-

nificant suppression of the emission at low frequencies. Moreover,
for low values of ?, the total radiated power is also strongly
suppressed. This total suppression is the combined result of the
low frequency cutoff due to the influence of the ionized medium
and the small emissivity of the mildly relativistic electrons at
high frequencies.

In order to assess the deviations of the ultrarelativistic
approximation mentioned above from the present results we have
plotted in figure (3) the ratio, Fyr/F, of the spectra obtained
from equation (18) to those shown in figure (2). We can see that
the ultrarelativistic approximation is quite adequate at large values
of)-since for all values of Qﬁ% where there is significant emission,
FUR/F does not deviate significantly from unity. At lower values of
x , however, the ultrarelativistic approximation appreciably over-
estimates the intensity of the emission at all values of W/,
Because of this, for sufficiently large plasma frequencies, the
cutoffs in the emission spectra of intermediate energy electrons
due to the influence of the medium will be even sharper than the
low frequency suppressions obtained in the previous ultrarelativistic
treatments of this effect. As pointed out in the introduction, this
may have interesting implications on Type IV solar radio bursts.

In figures (4) and (5) we plotted F(Ulﬂk) for Ublva of 3 and
1.5 respectively. It can be seen that the influence of the medium
diminishes with decreasing plasma frequency. The approximations
based on the assumption that VPQTQB , mentioned above, probably
break down for the spectra shown in figure 5. However, as can be

seen by comparing figures 1 and 5, for levb =1.5 the influence of
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the medium becomes quite small and at frequencies where both modes

propagate freely the emission is much like that in vacuum.
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Appendix I

We consider the radiation produced by an electron moving in
a circular orbit in a static and uniform magnetic field E immersed
in a homogeneous and isotropic medium characterized by a dielectric
constant £ and a magnetic permeability equal to that of free space.
The electric and magnetic vectors of the radiation field satisfy

Maxwell's equations:

9.F = qTp /€ (11)
V.H = 0 (12)
wh - 427, £28 @3
v:2 +é"%2 =0 (14)

where-P and I’are the charge and current densities associated with
-

the electron's motion. A wave equation for the magnetic vector H

can be obtained by taking the curl of equation (I3) and by using

equations (I2) and (I4):

VH-S35~" ¢ % (15)

Since the motion of the electron is periodic, with gyroperiod T,
-p
both H and Jr can be decomposed into Fourier series.

- 2wist
H (7,%) =25 R e 7 (16)
ZRLSt

T(fY) = Z 3. e T (17)
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the coefficients of which satisfy Poisson's equation:
2 2 2 4 -
ViH, +RgHg = - 40 9T (18)

where

_ awsie q
kg = 22 19)

By using the inverse transform of (I7), the solution of (I8) can

ANEX

' P, D, e
er W,\(") 1 &) (IIO)

be written as

T cet
- 2 i1
Hs(?) --.T.-gdt' e T

0

Since the current density can be written as

T(21) =ed) (7= ) (1w)

- -»
where fe(t) and\)’(t) are the electron's instantaneous position

and velocity, equations (I10) reduces to

T amgt Lk P-Telq
1,0 = 3 (e i Jw @)

where the gradient is taken with respect to fé'.

We now define a coordinate system such that its origin is at the
electron's guiding center and that the =z axis is parallel to the

direction of the static field B. Since the radiation is symmetric
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with respect to ﬁ, we can define the azimuthal orientation of the
system so that the yz plane contains the point of observation

Let Ro be the distance from the origin to the point of
observation andg a unit vector along this direction. If Ry is
much larger than both the wavelength of the radiation and the

2? =3
gyroradius fe ,‘V-Y'e' can be approximated by

iy
Using this relation and neglecting TQ-‘Q in the denominator of

the term in square brackets, equation (I12) can be written as

'ﬁs(?) - iR (F) <k (113)

where T; - g \‘5

and where —A.. (?) is given by
Lksko T . [ 2;;_‘1'- _-cs-?.]
R® = & 27 [at 50 e (1)

—d
In the coordinate system defined above, the =z component of Ag

vanishes and its x and y components are given by

keRo (% [ sy - TE Bsingsing] '
Ag, = - ¢°® SMsm{e P (1\5.)

Tc
Ro )
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2T [sg -VEpundsini]

Qs\a/ = 1??%0 Qi.\!sRoj A\? cw\f e (_‘[;5)

o

9
whereV is the magnitude of V , P is the ratio of V¥ to c and o
[

is the angle between k and B. Using some well known integrals

from the theory of Bessel functions, (I15) and (I16) reduce to
2ecV”  LRR, ’ .

oy = 257 ¢ R0 57 (spiE sing) @n

cRyR
2e s¥o ‘.
ﬂs% = mv\& e 3¢ (SPE‘VW) (1\8)

In an isotropic dielectric medium the electric and magnetic
vectors of plane electromagnetic waves and the propagation vector,
A
k , are mutually orthogonal and related by

- AN
E’ = i; Hx k (I\q)
As discussed in the main text, however; this relation is valid
only for sufficiently high frequencies where the anisotropy in-
troduced by the static field becomes negligible. Using (I19),
the pointing vector § can be written as

2 _ Mt
S = :;:JE_ R CiZdo

and therefore, the instananeous power radiated into the solid

angle element Ageis given by

- 2 clﬂ\z ks
a1 s I Reda2 yw Vg ( )
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The average power radiated into the s harmonic is obtained by
using (I6) and by averaging (I21) over one gyroperiod T. This

results in

AI_ - C\;\*Slsz JSZ (I 22)
5 gwie

Making use of equations (I13), (I17) and (I18), equation (I22)

can finally be written as

,2
%_1;—25 _ 21’.‘2:“-5‘ :I_!_E[Qtte ]':(SPJE sinb) ﬂ%"a Xs (SPJESM 9):} (126)

Since ‘E is equal to the index of refraction n, and the gyro-

period T is given by

T= 2TfMCJ"":73-;,-

e

equation (I23) is equvalent to equation (8) given in the main text.
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Appendix I1I

We now provide an outline of the evaluation of the in-
tegral in equation (9). Using the identities (Schott, 1912,
Watson, 1966)

IS = :,‘,—:jT‘vJo(zxscnf)mzsuy dy (1)
, s
I, ()= ;‘;SJ (2¥S\NLP)(C052\(——)¢‘.0:25‘(7J‘{’ (I=2)

o

the term in square brackets in equation (8) reduces to

Jo (25%n civ\asintf) 2 254 [ ‘31-“-;._' _Q_P’-nﬂ-s«‘nztr] Cp"f' .

{
i

°M_Q

Using this expression and the integral (Gradshteyn and Ryzhik,

1965)

|
S on(‘&X)CAx - -Sl_!:’,
et v

0

equation (9), with JI/JQ given by equation (8), reduces to

L(v) = vnlc3 ;%iftz
.ga\g.n‘l— S Ain (7_<_,‘ansint?) c..s;),s'f An P J\P +
0

(1-pw) S'w ain (25pnSing) (o195 ¢ I }S(v- 5_%"_3) ('l_lT_ 3)

B
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Making use of the identities (Schott, 1912; Schwinger, 1949)

{ \ v
st (2) = - a,g Sin (% S'l‘ﬂ'-f) m2$ﬁr Sl'n\f o‘lr

2 x>
) B ads = 5. { anlenl) 208 gy
o 0 ny

equation (III3) becomes equivalent to equation (10).
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Appendix III

We shall first derive equation (14) by using an asymptotic
formula from the theory of Bessel functions (Watson, 1966),

namely that for S('-— B n") >>l
\ \ gn e‘/"‘F""" st
{4rs 6"‘?0"")%[ +y I—P"n"

By differentiating and integrating this expression and by

J (25pN) =

using the identity

T 42 A
] [pn NP ] s\jjﬂ[[‘n o P J

dp) L 1o Vg™ P L vigne

2%

,which can be derived by direct differentiation, and the con-

2
daition s( l—‘s“h") »| |, mentioned above, we find that
vy 23
GRS ’ - * . .
J ’(zslsn) e & K‘JL“_). ___E__.. N J (m 4)
25 {qrs F.n l+\l\ -

K ‘ P (T_J (1 2)
SO J?.‘b (15*) ZS\FI-? (\ Pn')_)'SI"I {4 Pa“:-

Using equations (III1) and (III2), equation (11) reduces to

I R [y Lo R,
F)-E Beeed S ] (0
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Finally, making use of equation (17), we obtain that
F(2) =[E & L [ w2 s (w4)
Ve 3 n ok ot e ] ;S/h » 1
\

As can be seen, this expression is identical to equation (14)
in the main text.
We now consider the derivation of equation (15). Making use

of the asymptotic formula (Watson, 1966)

J (X) ~__ 2(s-% K‘/;[ 2.3,1(5~2‘)3IZJ (E5>

3x 3 x>

which is valid for large s and x, and x < §. we find that for
] ~Pﬁn"<<|

T, s (25P™ = = 5 (1-p) K'Ia[%s(“P‘“‘)’lz] (ILTG»)

By integrating and differentiating equation (III6) we directly

obtain
en €0
S T,o (26%) dx = 2‘_1‘_5 S \(13(‘3)4‘}/ <I[[7)
o v|y2r

and

y (ZSPY\) ‘r r’__‘_{_n_ (v,) Kaps (v.) (‘m g)

where ‘D[né is given by equation (16).
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In the process of differentiating equation (III6), we made use

of the formula (Schwinger, 1949)

3X \(u[; (x) + K'b (x) = -dx Kay (%)

Substituting (III7) and (III8) into equation (11) and again

making use of the condition \-P}hzé<|, we obtain

o0
F3) = BB [, (%) - [ utody] (@9
v|ve

Using the identity (Schwinger, 1949)

2‘“"2-13“) + K..’bfx) = "\{gb (¥)

equation (III9) can be reduced to

o0
) - 3(0) [t s s (69
v[vd

which is identical to equation (15) given in the main text.

As pointed out above, equation (III4) is valid for all values
of s and }1 as long asslﬁ»lis satisfied. If, however, g,

also is much larger than unity, equation (III4) should reduce
to an appropriate asympotic form of equation (III10). Indeed,
if 3}5>l , the expression in square brackets in equation

(I1I4) can be expanded in powers of 4[*
4

l d

}‘4 QZI}' ~ |

2
- _2;3 e W
L8 Bt

?
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Using this expression, and assuming that Nzl , equation

(II14) reduces to
1, :
FI3) = ?;‘ @G”Qz e (m«)

By making use of an asymptotic expression given by Ginzburg

and Syrovatskii (1964), namely that for X |

X f»c,,., (W) J} «z@ x'"e ¥

¥

we see that equations (III4) and (III10) have indeed the

same asymptotic forms for xl»l and S)}'
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FIGURE CAPTIONS

The emissivity function F(D/q: in vacuum for electrons
of various Lorentz factors. The circles denote the
frequencies corresponding to the first 10 harmonics.
The actual emission consists of discrete spikes at the
individual harmonics and can be obtained from F (u/vc)

by using equation (13).

The emissivity function F(vhk)in an ioﬁized meaium

for UP/vazézuuifor electrons of various Lorentz factors.
The actual emission consists of discrete spikes at the
individual harmonics and can be obtained from F‘(D/l%)

by using equation (13).

The ratio between the values of F (v/qﬂ calculated by
using the ultrarelativistic approximation to those shown
in figure 2. Fyp corresponds to the values of l:(U/QJ

obtained from equation (15) for DP/"B =6 .

The emissivity function Fﬁﬂ%)in an ionized medium for
ur[quB and for electrons of various Lorentz factors. The
actual emission consists of discrete spikes at the in-
dividual harmonics and can be obtained from F (U/LQ)

by using equation (13).

The emissivity function F(vh%) in an ionized medium for
uP[vB = .6 and for electrons of various Lorentz factors.
The actual emission consists of discrete spikes at the
individual harmonics and can be obtained from F(u/%J

by using equation (13).



F(v/bc)

10

10

U BRI LN |

llll_fil

10

Up

<< vB

1

Ll

.1 11l

1

1

1

1 1 el

107!

v/vc

Figure 1




- T T T T THIT llll] 1 F 1T 1TT1T1
7= ]
107! - =
_ [r=50 ]
1072 |- -
- ]
- y220 N
- Y=10 7
10-3- rY=5 -
[ vp=6ug r=3 1
i y \
|O"4 | | lllllll | L 1 llllll |
1072 107! | 10
v/ve

Figure 2



Fur /F

T T T ITTT] T T T T T T
= 782 7="5 -
=3

2

I0*E yes

10 -

| L L1 1 vl L 1 1 11111
10~ |

v/vc

Figure 3

10



- T T T 1171 L T 11T T T 11711
—Y=0 Z

10} =
[ r=20 _

-2 r=10

0 = g
- L .
H 7'5 7-_-3 7=2 Y='.2 _
i v;3v8 |

Y =1.5

K53J L 1l L 1l TN

10 10 | 10

v/vc

Figure &4



F (v/vc)

10

LN AR LR AN |

]lll]

rrvrrvg

L1 1.1

1

v/vc

Figure 5

10



